ETUDE DES EQUILIBRES SOLIDE-LIQUIDE DU SYSTEME PSEUDO-BINAIRE LiPO₃-RbPO₃

O. S. M. Elmokhtar et M. Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences, 7021 Zarzouna, Bizerte, Tunisie

(Reçu le 27 Février 1995)

Abstract

The LiPO₃-RbPO₃ system was investigated by differential thermal analysis, X-ray diffraction and infrared spectroscopy. The system forms two linear polyphosphate compounds: $Li_2Rb(PO_3)_3$ and $LiRb(PO_3)_2$. The first one melts in a peritectic reaction at 552°C and the second one melts congruently at 613°C. It is established that both compounds are mixed polyphosphates with chain structure. Their reticular distances and IR characteristics are given here.

Keywords: DTA, IR, LiPO₃-RbPO₃ system, X-ray

Introduction

Dans le cadre des travaux que nous effectuons au laboratoire, sur le comportement thermique et thermodynamique des cyclohexaphosphates de cations mixtes de type: $A_x^I M_y^I P_6 O_{18} \cdot n H_2 O$; x + y = 6, l'établissement des diagrammes de phases des systèmes pseudo-binaires : $A^I P O_3 - M^I P O_3$, s'avère indispensable afin de comprendre et d'interpréter les différentes transformations observées au cours de l'analyse thermique de certains phosphates condensés revenant à ces systèmes.

Pour les systèmes LiPO₃- $M^{I}PO_{3}$, on relève de la littérature trois diagrammes d'équilibres de phases correspondant au métaux alcalins M^{I} =Na, K, Cs [1] et un autre, celui de LiPO₃-RbPO₃, signalé dans le cadre d'un mémoire de thèse [2]. Dans le présent travail, nous rapportons le diagramme d'équilibres de phases du système LiPO₃-RbPO₃, que nous avons établi nous même au laboratoire pour comprendre le comportement thermique, des deux cyclohexaphosphates: Li₃Rb₃P₆O₁₈·H₂O [3] et Li₂Rb₄P₆O₁₈·4H₂O [4].

Travail expérimental

Les polyphosphates LiPO₃ et RbPO₃ sont préparés à partir de l'hydrogénophosphate diammonique et des carbonates de lithium et de rubidium, selon le schéma réactionnel suivant: $M_2CO_3 + 2(NH_4)_2HPO_4 \rightarrow 2MPO_3 + CO_2 + 4NH_3 + 3H_2O$

On chauffe, dans une première étape, le mélange des deux réactifs (Fluka p.a.) à 200°C, les produits de chauffage sont ensuite calcinés pendant quelques jours à 650° C pour obtenir RbPO₃[5] et à 600° C pour obtenir LiPO₃ [6].

A partir de LiPO₃ et de RbPO₃, on prépare plusieurs mélanges. Ces mélanges sont soumis à un traitement thermique convenable (broyage d'homogénéisation et calcination pendant quelques jours à 350° C, pour les mélanges riches en rubidium et à 500° C, pour les mélanges riches en lithium).

Les échantillons obtenus sont ensuite analysés par μ -ATD en montée de température à l'aide d'un micro-analyseur Setaram M5. Les thermocouples Pt/Pt-Rh, étalonnés par rapport à la température de fusion de NaCl, sont

Fig. 1 Représentation graphique du diagramme d'équilibres du système LiPO₃-RbPO₃

utilisés pour détecter les accidents thermiques. Al₂O₃ (α) est choisi comme référence. La vitesse de chauffe est de 10 deg·min⁻¹. La précision des températures est de $\pm 5^{\circ}$ C.

Les diagrammes de diffraction des rayons X sont relevés à vitesse lente (¹/4°20·min⁻¹) sur un diffractomètre Philips PW 1729 utilisant la longueur d'onde $K_{\overline{\alpha}}$ du cuivre.

Les spectres d'absorption IR sont enregistrés à l'aide d'un spectrophotomètre Perkin-Elmer IR-983G sur des échantillons en pastille dans KBr.

Résultats et discussion

La figure 1 représente le diagramme d'équilibres solide-liquide du système LiPO₃-RbPO₃. Elle montre la formation de deux composés définis:

- Li₂Rb(PO₃)₃ à fusion non congruente, qui se décompose à 552°C dans une réaction péritectique:

Fig. 2 Diagrammes de diffraction des rayons X de Li₂Rb(PO₃)₃ et de LiRb(PO₃)₂

 $Li_2Rb(PO_3)_3 \rightleftharpoons LiRb(PO_3)_2 + liquide$

Le péritectique est à 31% RbPO₃. Ce péritectique ainsi que le composé $Li_2Rb(PO_3)_3$ n'apparaissent pas dans le diagramme signalé par ailleurs [2].

- $LiRb(PO_3)_2$ à fusion congruente, il fond à 613°C.

Les eutectiques à 25% et 79% de RbPO₃ fondent respectivement à 544 et 540°C. Le palier à 403°C correspond à la transformation de phase:

RbPO₃ (α) \rightleftharpoons RbPO₃ (β) signalée par ailleurs [7].

Les mélanges à 33 et 50% en RbPO₃ ont été étudiés par diffraction des rayons X. Ils correspondent aux monocristaux de $Li_2Rb(PO_3)_3$ et $LiRb(PO_3)_2$

Tableau 1 Dépouillement indexé des diffractogrammes de poudre de Li₂Rb(PO₃)₃ et de LiRb(PO₃)₂

Li ₂ Rb(PO ₃) ₃					LiRb(PO ₃) ₂			
h k l	$d_{\rm cal}$ /	d _{obs} /	I/I _{max} / %		$d_{\rm cal}$ /	dobs /	$I/I_{\rm max}$ /	
	Å	Å		hkl	Å	Å	%	
002	5.278	5.283	11	220	7.044	7.040	20	
121	5.037	5.038	4	022	5.592	5.597	13	
112	4.538	4.536	10	040	4.864	4.865	10	
202	3.988	3.989	100	113	4.335	4.333	15	
311	3.637	3.635	5	242	3.694	3.694	29	
230	3.529	3.528	26	133	3.667	3.666	24	
222	3.399	3.401	10	004	3.417	3.417	100	
231	3.347	3.345	22	531	3.351	3.352	25	
321	3.273	3.271	20	062	2.929	2.927	35	
113	3.271			153	2.928			
312	3.123	3.125	4	622	2.908	2.907	22	
141	3.008	3.007	26	044	2.796	2.795	11	
232	2.934	2.934	4	171	2.699	2.698	9	
240	2.866	2.866	4	244	2.697			
420	2.756	2.756	10	444	2.452	2.453	18	
004	2.639	2.638	28	080	2.432	2.432	16	
402	2.637			280	2.366	2.366		
233	2.492	2.491	4	335	2.364		25	
430	2.490							
323	2.461	2.460	14					
431	2.424	2.424	9					
143	2.342	2.343	7					

préparés par la méthode de flux à partir de Rb_2CO_3 , Li_2CO_3 et H_3PO_4 [8]. Les paramètres de maille de ces deux composés, ont été affinés par la méthode des moindres carrés à l'aide des données angulaires relevées de leurs diffractogrammes de poudre (figure 2). Ces paramètres sont:

$$a = 12.176(5), b = 12.993(6), c = 10.556(5) \text{ Å}, Z = 8, V = 1670 \text{ Å}^3;$$

groupe d'espace Pbca pour Li₂Rb(PO₃)₃;

et a = 20.418(8), b = 19.449(5), c = 13.665(5) Å, Z = 32, V = 5432 Å³, groupe d'espace Fdd2 pour LiRb(PO₃)₂.

Leurs dépouillements indexés, sont donnés dans le tableau 1.

L'étude des spectres IR de ces composés (Fig. 3) montre qu'il s'agit d'une structure en chaîne: la bande intense $v_{as}(OPO)$ à 900 cm⁻¹, le multiplet $v_s(POP)$ entre 680 et 810 cm⁻¹ et le dédoublement des vibrations de déformation des tétraèdres PO₄ sont en effet caractéristiques de ce mode de structure dans les phosphates condensés [9, 10]. Ces résultats sont bien conformes à leurs structures cristallines déterminées sur des monocristaux par Averbuch-Pouchot [11].

Fig. 3 Spectres d'absorption IR de Li₂Rb(PO₃)₃ et de LiRb(PO₃)₂

Conclusion

L'étude du système pseudo-binaire LiPO₃-RbPO₃ par micro-ATD, nous a permis d'établir son diagramme d'équilibre de phases et de montrer la formation de deux composés définis: Li₂Rb(PO₃)₃ à fusion non congruente à 552°C et LiRb(PO₃)₂ à fusion congruente à 613°C. Ces deux phosphates condensés présentent une structure dont les bandes d'absorption IR correspondent à un enchaînement linéaire de l'anion phosphate: $(PO_3)_n^{n-}$.

Références

- 1 I. V. Mardirosova et G. A. Bukhalova, Russ. J. Inorg. Chem., 11 (1966) 10.
- 2 C. Cavero-Ghersi, Thčse 3^e cycle, Grenoble (1975).
- 3 O. S. M. Elmokhtar et M. Rzaigui, Bull. Soc. Chim. Belg. (à paraître)
- 4 O. S. M. Elmokhtar et M. Rzaigui, (en cours de préparation)
- 5 D. E. C. Cobridge, Acta Cryst., 9 (1956) 308.
- 6 Yu. I. Ostroushko, P. I. Buchikhim, et al. Litti Ego Khimii i Tekhnologiya, Atomizdat, Moscow 1960.
- 7 M. A. Savenkova, B. V. Kubasova, I. V. Mardirosova et E. V. Poletaev, Izv. Akad. Nauk SSSR, Neorg. Mater., 11 (1975) 2200.
- 8 N. El Horr et M. Bagieu, C. R. Acad. Sci., 312 II (1991) 373.
- 9 D. E. C. Cobridge et E. J. Lowe, J. Chem. Soc., 493 (1954) 647.
- 10 V. A. Madji, Yu. I. Krasilov, V. A. Kizel, Yu. V. Denisov, N. N. Chudinova et N. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Neorg. Materialy, 14 (1978) 2061.
- 11 M. T. Averbuch-Pouchot, A. Durif et J. C. Guitel, Acta Cryst. B2 (1976) 2440.